ADM CCS Projects UIC Class VI Permitting Experience

Carbon Storage R&D Review Meeting

August 18, 2015 Scott McDonald Biofuels Development Director scott.mcdonald@adm.com

Acknowledgements

- The Industrial Carbon Capture and Storage (ICCS) project is administered by the U.S. Department of Energy's Office of Fossil Energy and managed by the National Energy Technology Laboratory (award number DE-FE-0001547) and by a cost share agreement with the Archer Daniels Midland Company, University of Illinois through the Illinois State Geological Survey, Schlumberger Carbon Services, and Richland Community College. This ICCS project received DOE funding from the American Recovery and Reinvestment Act of 2009 (\$141.4 million).
- The Midwest Geological Sequestration Consortium is funded by the U.S. Department of Energy through the National Energy Technology Laboratory via the Regional Carbon Sequestration Partnership Program (contract number DE-FC26-05NT42588) and by a cost share agreement with the Illinois Department of Commerce and Economic Opportunity, Office of Coal Development through the Illinois Clean Coal Institute.
- The Midwest Geological Sequestration Consortium (MGSC) is a collaboration led by the geological surveys of Illinois, Indiana, and Kentucky

Illinois Basin Decatur Project

 Large scale geologic test to inject 1.0 million mt of CO₂ over a three year period (1,000 MT/day).

Illinois Industrial CCS Project

- Target & demonstrate advanced CCS technologies at industrial scale facilities.
- Inject and store 1.0 million mt CO₂ per year (3,000 tons/day).
- Study the interaction of two separate plumes.

Decatur Site Overview

Richland CC

LLINOIS INDUSTRIAL CARBON CAPTURE & STORAGE

VW#2

GM#2

CCS#2

CCS#1 GM#1

VW#1

NSEC

ADM Facility

Compression & Dehydration

CO₂ Collection Blower Area

LLINOIS ADM . Project Process Flow Diagram INDUSTRIAL CARBON CAPTURE & STORAGE CAPTURE & STORAGE Reciprocating Supercritical CO₂ Centrifugal **Injection Well** Compressors (3250 HP) 8-in, 1-mile Pipeline Booster P set by permit **4 Stages with Intercoolers** 2500-3000 MTPD Pump (estimate < 2300)Centrifugal M<0.005 (400 HP) 4th Stage Discharge Blower CO_2 (3000 HP) CO₂ P=1425 P=35 **Primary Source of Drinking Water** (D=140) CO_2 24-in line Dehydrated **Tri-ethylene Glycol** CO₂ to 1500-ft **Dehydration Unit New Albany Shale** 4th Stage CO₂ Inlet (D=2000, T=120): **Tertiary Seal Separator** CO_2 Maguoketa 3rd Stage Contactor Shale Discharge Water (D=2600, T=200): CO₂ P=590 **Secondary Seal** St. Peter Sandstone Glycol Water -Lower Most USDW Regenerator Wet CO₂ from (D=4000) **Corn-to-Ethanol** Eau Claire Shale **Fermentation** (D=5000, T=500): Regenerator **Primary Seal** Return Reboiler **Dry Glycol** Mt. Simon Sandstone CO₂ Sequestration – (D=5500, T=1600): ~7,000 ft. depth in Saline Reservoir Mt. Simon Sandstone **Pre-Cambrian Granite** (D=7200)

ICCS & IBDP Project Timelines

ICCS & IBDP Construction and Operations Timeline

ICCS Permitting Timeline

AĎ

Main Challenges

Alternative PISC Timeframe

- Default PISC is 50 Years
- Applicant allowed to petition for an alternative timeframe
- ADM Proposed 10 Year PISC
 - Reservoir Pressure Decline
 - Plume Stabilization
 - CO₂ Partitioning

Main Challenges Alternative PISC Timeframe

Alternative PISC Timeframe

Reservoir Pressure Decline

Aggregate differential pressure contours at the end of the operational period.

Alternative PISC Timeframe Copy Plume Stabilization

Time Lapse VSP Surveys

Time Lapse VSP Surveys

Time Lapse VSP Surveys

ADM Alternative PISC Timeframe **CO**₂ Mass Partitioning

Over 50% of the CO₂ is trapped within the reservoir after 10 years.

INOIS

CAPTURE & STORAGE

Thank You!

Industrial Carbon Capture and Storage Project:

- U.S. Department of Energy Award No. DE-FE-0001547
- Administered by the DOE's Office of Fossil Energy
- Managed by the National Energy Technology Laboratory
- DOE cost share from American Recovery and Reinvestment Act of 2009

Cost Share Agreements:

- Archer Daniels Midland Company
- University of Illinois through the Illinois State Geological Survey
- Schlumberger Carbon Services
- Richland Community College

Project Team Members Contacts:

- Dr. Sai Gollakota (NETL-DOE) Sai.Gollakota@NETL.DOE.GOV
- Dr. Robert Finley, (ISGS) <u>finley@isgs.illinois.edu</u>
- John Medler, (Schlumberger Carbon Services) jmedler@slb.com
- Dr. Douglas Brauer (RCC) <u>dbrauer@richland.edu</u>

(Disclaimer: Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.)